
Organoid cultures for the analysis of cancer phenotypes
Norman Sachs and Hans Clevers

Available online at www.sciencedirect.com

ScienceDirect
Preclinical models of cancer are essential for a basic

understanding of cancer biology and its translation into efficient

treatment options for affected patients. Cancer cell lines and

xenografts derived directly from primary human tumors have

proven very valuable in fundamental oncology research and

anticancer drug discovery. Both models inherently comprise

advantages and caveats that have to be accounted for. We will

outline in these and discuss primary patient derived organoids

as third preclinical cancer model. We propose that cancer

organoids could potentially fill the gap between simple cancer

cell lines suitable for high-throughput screens and

complicated, but physiologically relevant xenografts. The

resulting applications for cancer organoids range from basic

research to drug screens and patient stratification.

Addresses
Hubrecht Institute for Developmental Biology and Stem Cell Research,

University Medical Centre Utrecht, Upsalalaan 8, 3584CT Utrecht, The

Netherlands

Corresponding author: Clevers, Hans (h.clevers@hubrecht.eu)

Current Opinion in Genetics & Development 2014, 24:68–73

This review comes from a themed issue on Cancer genomics

Edited by David J Adams and Ultan McDermott

For a complete overview see the Issue and the Editorial

Available online 31st December 2013

0959-437X/$ – see front matter, # 2013 Elsevier Ltd. All rights

reserved.

http://dx.doi.org/10.1016/j.gde.2013.11.012

Introduction
Despite decreasing mortality rates, cancer still represents

a major public health problem in many parts of the world

[1]. Apart from improving health choices and diagnostics,

it is therefore essential to advance cancer therapeutics. In

order to study cancer biology and translate this knowledge

into health benefits, preclinical tumor models are necess-

ary that resemble real malignancies and predict in vivo
drug responses. However, cancer models too rarely fulfill

these requirements due to limitations in power or simple

inaccuracy [2]. As a consequence, many drug candidates

that perform well in preclinical models fail to deliver in

clinical trials, resulting in suboptimal patient treatment

and wasted resources [3]. Current cancer models can be

divided into animal models, where cancer is induced

experimentally, and human-derived models, where

primary human tumors are studied outside their host.

Mouse cancer models have tremendously contributed to

the basic understanding of cancer and have been exten-

sively reviewed elsewhere [4,5]. Human-derived models
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currently include cancer cell lines and primary patient-

derived tumor xenografts (PDTX). While reviewing

benefits and drawbacks of these two models, we will

focus on potential (dis)advantages of a third human-

derived cancer model: primary tumor organoids.

Cancer cell lines
The first ever-growing human cancer cell line was estab-

lished from the cervical carcinoma of Henrietta Lacks in

1951 [6]. Since then, scores of cancer cell lines have been

generated which have proven invaluable for cancer

research and drug development. For example, the dis-

covery that human breast cancer cell lines MCF-7 and

ZR75-1 grow estrogen dependently [7] was pivotal to the

development of the estrogen receptor antagonist fulves-

trant (Faslodex, AstraZeneca) [8]. Drug screens across

large panels of cancer cell lines yielded additional find-

ings, such as the identification of drug targets and gene

signatures that predict drug responses [9,10].

There are several practical advantages of working with

cell lines: they are homogenous, easy to propagate, grow

almost infinitely in simple media, and allow extensive

experimentation including high-throughput drug screens.

Disadvantages such as genotypic drift and cross-contami-

nation can usually be prevented by rigorous quality con-

trol and freezing well-characterized, low passage stocks

[11]. More difficult to overcome is the poor efficiency with

which permanent cell lines can be established from solid

tumors: for primary breast cancers the success rate is

between 1 and 10% [12] while prostate cancer is

represented by less than 10 cell lines [13��]. This ineffi-

ciency is mainly due to a challenging in vitro adaptation of

primary tumor cells which usually lose growth potential

after few passages and go into crisis. Clonal cells only

rarely emerge from the dying culture. As a result, the

available cancer cell lines fall short of faithfully represent-

ing the clinical cancer spectrum. Since many cancer cell

lines have been generated from metastatic and fast grow-

ing tumors, primary and slowly growing tumors are

severely underrepresented. Control cell lines from normal

tissue of the same patient are also scarce. Current cancer

cell lines can therefore not adequately serve as models for

tumor progression [11] (Figure 1). Additional problems

arise from the loss of tumor heterogeneity and adaptation

to in vitro growth. Consequently, gene expression profiles

of tumors are regularly closer to corresponding normal

tissues rather than cancer cell lines [14]. To reestablish a

physiological environment and counteract genotypic

divergence, cell lines have been transplanted into mouse

models. Although these xenografts offer improvements

over traditional cell culture, more success has been
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Patient-derived tumor cell lines, xenografts, and organoids. (a) Schematic representation of establishing cell lines, xenografts, and organoids from

different stages of human colon cancer. Cancer cell lines (top row) undergo crisis, in vitro adaptation, and selection favoring the growth of advanced

clones. Following injection into immunocompromised mice, PDTX (middle row) preserve tumor heterogeneity and tumor–host interactions. Advanced

tumor subclones generally grow best. Organoids (bottom row) form under permissive growth conditions in matrigel and can be established from all

tumor stages as well as normal tissue. (b) Microscopic examples of preclinical models of colorectal adenocarcinomas with different degrees of

heterogeneity. Cell line LS174T and organoid lines P23T and P26T (phase contrast) are shown next to PDTX P6X2 (H&E stain, reprinted from [18]).
achieved by avoiding in vitro culture altogether and

directly engrafting human cancers [15] (Table 1).

Patient-derived tumor xenografts
PDTX are obtained by directly implanting freshly

resected tumor pieces subcutaneously or orthotopi-

cally into immuno-compromised mice [16,17]. Follow-

ing tumor take, PDTX grow progressively and can be

serially engrafted into increasing numbers of animals.

Since the physiological in vivo environment, although

from a different species, mimics the original tumor

conditions much better than a plastic dish, success

rates of establishing PDTX are higher than for cell

lines and genetic divergence is less common [15].

Importantly, biological stability of PDTX from a

variety of primary tumors including colon, lung, breast,

pancreas, prostate, and ovarian cancer has been estab-

lished [16,17]. Xenografted colon tumors, for example,

preserve their original genetic and histological profiles

for up to 14 passages [18]. In addition, several sub-
www.sciencedirect.com 
clones grow in parallel and partially conserve parental

tumor heterogeneity (Figure 1). These benefits make

PDTX a valid preclinical model and allow meaningful

biological assays including drug efficacy and predictive

biomarker development studies [17]. To this end,

PDTX have been used to functionally verify rationally

predicted drug response scores [19], develop predic-

tive biomarkers for standard and novel anticancer

drugs [17], and identify effective treatment regimens

for patients [20��].

Even though PDTX bear great promise as preclinical

model for human cancer, there are several caveats.

First, tumor take is unsatisfactory with aggressive

tumors engrafting best. In some instances, the ability

to xenograft even serves as a negative predictor of the

patients’ disease free survival [21]. Second, although

similarities between PDTX and parental tumors are

common, they cannot be assumed and must be rigor-

ously tested [17]. Third, tumor-host interactions are
Current Opinion in Genetics & Development 2014, 24:68–73
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Table 1

Characteristics of the three described preclinical cancer models. We judged the representation of the respective feature as best (+++),

suitable (++), possible (+), and unsuitable (S)

Feature Cell lines Xenografts Organoids

Ease of maintenance +++ � +

Success rate of initiation + ++ +++

Expansion +++ + +++

Biological stability + ++ ++

Representation of cancer spectrum + ++ ++

Genetic manipulation +++ � ++

Normal control � � ++

3D growth +/� +++ ++

Heterogeneity � ++ +

Dose-limiting organ toxicity � ++ �
Tumor–stroma interaction � ++ �
Immune system � � �
Testable drug classesa 2 3 2

Low throughput drug screens +++ + +++

High throughput drug screens +++ � ++

Conferment of drug resistance � ++ +

a The following three general classes of anti-cancer drugs have been established for judging the use of preclinical models: agents targeting tumor-

specific proteins, agents targeting host-tumor interactions, and agents targeting tumor cells empirically [3].
not always conserved across species (e.g. HGF-MET)

and tumor immunity is entirely absent [3]. Fourth, the

use of animals is labor intense, time consuming, and

ethically problematic. Consequently, PDTX are no

substitute for in vitro cultures with respect to initial

high throughput drug screens. This is particularly

relevant since altered signaling pathways often cross-

talk to others which requires combinatorial therapy of

many drug candidates for optimal treatment [22].

Recently established organoid cultures from primary

tumors [23��] may expand the repertoire of available

preclinical tumor models by bridging this gap between

cancer cell lines and xenografts.

Organoids
The past years have seen unprecedented developments

in the use of human tissue surrogates in vitro. Adult stem

cells are embedded in a three-dimensional matrix and

allowed to self-organize into epithelia of the respective

organ of origin. The resulting organoids represent the

physiology of native epithelia much better than

traditional cell lines. Mini-guts, for example, reproduce

the epithelial architecture of small intestine and colon

[23��,24�].

The base for growing human intestinal organoids was laid

by discovering the culture conditions of mouse intestinal

organoids [25�]: by mimicking the environment of intes-

tinal stem cells, Sato and colleagues succeeded in estab-

lishing the minimal requirements for sustainable growth

of crypt-villus structures without mesenchyme. In short,

R-spondin-1 (enhances Wnt signaling), EGF (mitogen),

Noggin (inhibits BMP signaling), and Matrigel (base-

ment membrane substitute) are indispensable stem cell

maintenance factors for small intestinal cultures with
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supplementary Wnt being necessary for colonic organoid

growth. Human intestinal organoids additionally require

nicotinamide, A83-01 (Alk inhibitor), SB202190 (p38

inhibitor), and prostaglandin E2 (PGE2, mitogen) for

long-term expansion (human intestinal stem cell culture

(HISC) condition). Differentiation can be achieved by

withdrawing growth factors while simultaneously block-

ing Notch signaling (dibenzazepine, g-secretase inhibi-

tor) [23��,24�]. Intestinal organoids are currently unique,

because they efficiently form, self-renew, and expand

long-term while remaining genetically stable [23��].
These features allow many applications ranging from

basic to translational research [26,27]. Importantly,

patient derived intestinal organoids emulate human dis-

ease as has recently been demonstrated for cystic fibrosis

[28�]. Currently, organoids are being established from a

variety of tumors with colorectal cancer (CRC) leading

the way.

Cancer organoids
Cancer occurs through a chain of cellular alterations

allowing uncontrolled proliferation and gradual loss of

differentiation [29,30]. Most CRCs progress sequentially

from adenomatous polyps to advanced adenomas, carci-

nomas in situ, and adenocarcinomas. There are strong

indications that successive genetic changes are causal to

cancer progression [31,32]. Mutations in the tumor sup-

pressor gene APC (adenomatous polyposis coli) or other

Wnt pathway components (AXIN2, CTNNB1) can be

found in most microscopic lesions and are therefore

considered initiating and rate-limiting mutations for the

majority of CRCs [31,32]. Additional mutations associ-

ated with CRC affect DNA repair (MLH1, MSH2, and

MSH6), cell-cycle regulation (TP53), and growth factor

signaling (TGFBR2, SMAD4, KRAS, BRAF , and PTEN)
www.sciencedirect.com
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[31,32]. Recent evidence furthermore suggests that can-

cer stem cells rather than random cells fuel tumor growth

in several tissues including the intestine [33–35]. It is

therefore plausible to attempt culturing epithelial-

derived cancers using the HISC protocol described

earlier.

Organoids are indeed readily established from surgically

resected intestinal tissue and endoscopic biopsies of

patients suffering from adenomas and adenocarcinomas

[23��]. These CRC organoids grow as irregular compact

structures and can be expanded seemingly indefinitely.

Apart from Goblet and enteroendocrine cells, they mostly

contain proliferating cells [23��]. The presence of differ-

entiated cells within CRC organoids potentially allows

conferment of drug resistance to cancer stem cells [36].

Additional heterogeneity can be introduced by co-cultur-

ing patient-matched healthy control organoids estab-

lished from tumor-adjacent normal tissue (Figure 1).

However, in order to avoid cross-contamination, it is

essential to initiate the tumor organoid culture from a

pure tumor population and/or use selective culture con-

ditions. CRC lesions are generally well defined which

allows the pathologist to exclude potentially contami-

nating normal epithelium. Theoretically, selective cul-

ture conditions can be applied for the majority of CRCs

given the high penetrance of activating Wnt pathway

mutations [31,32]. Indeed mouse intestinal organoids

with genetically inactivated Apc grow in the absence of

Wnt or R-spondin-1, whereas wild-type organoids do not

[23��,37,38]. Likewise, this selection pressure can be

applied to most CRC organoids by withdrawing R-spon-

din-1 [23��] or Wnt. Since EGF is dispensable for growing

a different subset of CRC organoids (presumably with

KRAS or BRAF mutations) [23��], withdrawal of this

growth factor or addition of EGFR inhibitors can enforce

the necessary selection pressure. However, standard

HISC conditions have to be used in order to grow orga-

noids from adeno(carcino)mas without Wnt or EGFR

pathway mutations. In that case, the differentiation be-

tween normal and CRC organoids relies on sample purity

and organoid characterization. It is therefore not trivial to

generate organoid lines that fully represent the spectrum

of CRCs. Given the high success rate of establishing CRC

organoids, their unlimited proliferative potential, bio-

logical stability, and cryostorage ability it seems, however,

to be merely a question of effort to do so. If combined

with genetic information and pharmacological profiles,

such an organoid collection could aid in identifying CRC

specifics that predict a patient’s drug response similar to

the Cancer Cell Line Encyclopedia [13��].

Advanced cancers display genomic instability which

drives tumor progression by accumulating additional

mutations [30]. Assuming random mutability, it is there-

fore unlikely that tumor organoids ex vivo undergo the

same genetic alterations as their parental tumor in vivo
www.sciencedirect.com 
(unless the same selection pressures apply). On the

other hand, targeted therapeutic treatment is known

to evoke resistance and favor the selection of subclones,

potentially also in vitro. To directly compare tumor

progression and drug induced selection in vitro and in
vivo, multiple organoid lines from the same patient

could be established (e.g. early, progressed, and metas-

tasized cancers; pre-treatment and post-treatment) and

treated in parallel.

A possible disadvantage of organoid culture may be that

organoids from progressed cancers counterintuitively

grow worse than those from early tumors or normal tissue

due to culture conditions (optimized for normal culture)

and potential loss of epithelial integrity (epithelial-

mesenchymal transition). On the other hand, organoids

from early tumor stages can be established at much higher

success rates than cancer cell lines or PDTX allowing a

better representation of the respective cancer spectrum.

Organoids as pure epithelial cultures lack tumor stroma

and vasculature. In that respect, PDTX models are more

physiologically relevant and allow drug tests that target

host–tumor interactions. Regarding tumor heterogeneity,

organoids therefore fall in between purely clonal cancer

cell lines and PDTX. Ambivalent is the requirement of

matrigel which makes organoid culture more labor

intense than culturing cell lines in 2D and adds a com-

plicating parameter to potential drug screens. Then again,

the laminin-rich and collagen IV-rich matrigel functions

as a basement membrane substitute which, given its

tumor origin [39], may be physiologically relevant. Also,

organoid culture is considerably easier than maintaining

PDTX. Currently available human (cancer) organoid

lines are limited to the intestine. However, given recent

advances in organoid cultures of several mouse tissues

(stomach, liver, pancreas, and others [40–42]) it seems

merely a question of time and effort before equivalent

human (cancer) organoids can be cultivated as well. A

future collection of organoids that is representative of the

respective cancer group, could help patient stratification

as well as oncogenic therapeutics.
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