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Organoid cultures for the analysis of cancer phenotypes
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Preclinical models of cancer are essential for a basic
understanding of cancer biology and its translation into efficient
treatment options for affected patients. Cancer cell lines and
xenografts derived directly from primary human tumors have
proven very valuable in fundamental oncology research and
anticancer drug discovery. Both models inherently comprise
advantages and caveats that have to be accounted for. We will
outline in these and discuss primary patient derived organoids
as third preclinical cancer model. We propose that cancer
organoids could potentially fill the gap between simple cancer
cell lines suitable for high-throughput screens and
complicated, but physiologically relevant xenografts. The
resulting applications for cancer organoids range from basic
research to drug screens and patient stratification.
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Introduction

Despite decreasing mortality rates, cancer still represents
a major public health problem in many parts of the world
[1]. Apart from improving health choices and diagnostics,
it is therefore essential to advance cancer therapeutics. In
order to study cancer biology and translate this knowledge
into health benefits, preclinical tumor models are necess-
ary that resemble real malignancies and predict iz vivo
drug responses. However, cancer models too rarely fulfill
these requirements due to limitations in power or simple
inaccuracy [2]. As a consequence, many drug candidates
that perform well in preclinical models fail to deliver in
clinical trials, resulting in suboptimal patient treatment
and wasted resources [3]. Current cancer models can be
divided into animal models, where cancer is induced
experimentally, and human-derived models, where
primary human tumors are studied outside their host.
Mouse cancer models have tremendously contributed to
the basic understanding of cancer and have been exten-
sively reviewed elsewhere [4,5]. Human-derived models

currently include cancer cell lines and primary patient-
derived tumor xenografts (PDTX). While reviewing
benefits and drawbacks of these two models, we will
focus on potential (dis)advantages of a third human-
derived cancer model: primary tumor organoids.

Cancer cell lines

The first ever-growing human cancer cell line was estab-
lished from the cervical carcinoma of Henrietta Lacks in
1951 [6]. Since then, scores of cancer cell lines have been
generated which have proven invaluable for cancer
research and drug development. For example, the dis-
covery that human breast cancer cell lines MCF-7 and
ZR75-1 grow estrogen dependently [7] was pivotal to the
development of the estrogen receptor antagonist fulves-
trant (Faslodex, AstraZeneca) [8]. Drug screens across
large panels of cancer cell lines yielded additional find-
ings, such as the identification of drug targets and gene
signatures that predict drug responses [9,10].

There are several practical advantages of working with
cell lines: they are homogenous, easy to propagate, grow
almost infinitely in simple media, and allow extensive
experimentation including high-throughput drug screens.
Disadvantages such as genotypic drift and cross-contami-
nation can usually be prevented by rigorous quality con-
trol and freezing well-characterized, low passage stocks
[11]. More difficult to overcome is the poor efficiency with
which permanent cell lines can be established from solid
tumors: for primary breast cancers the success rate is
between 1 and 10% [12] while prostate cancer is
represented by less than 10 cell lines [13°°]. This ineffi-
ciency is mainly due to a challenging 7z vifro adaptation of
primary tumor cells which usually lose growth potential
after few passages and go into crisis. Clonal cells only
rarely emerge from the dying culture. As a result, the
available cancer cell lines fall short of faithfully represent-
ing the clinical cancer spectrum. Since many cancer cell
lines have been generated from metastatic and fast grow-
ing tumors, primary and slowly growing tumors are
severely underrepresented. Control cell lines from normal
tissue of the same patient are also scarce. Current cancer
cell lines can therefore not adequately serve as models for
tumor progression [11] (Figure 1). Additional problems
arise from the loss of tumor heterogeneity and adaptation
to in vitro growth. Consequently, gene expression profiles
of tumors are regularly closer to corresponding normal
tissues rather than cancer cell lines [14]. To reestablish a
physiological environment and counteract genotypic
divergence, cell lines have been transplanted into mouse
models. Although these xenografts offer improvements
over traditional cell culture, more success has been
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Patient-derived tumor cell lines, xenografts, and organoids. (a) Schematic representation of establishing cell lines, xenografts, and organoids from
different stages of human colon cancer. Cancer cell lines (top row) undergo crisis, in vitro adaptation, and selection favoring the growth of advanced
clones. Following injection into immunocompromised mice, PDTX (middle row) preserve tumor heterogeneity and tumor-host interactions. Advanced
tumor subclones generally grow best. Organoids (bottom row) form under permissive growth conditions in matrigel and can be established from all
tumor stages as well as normal tissue. (b) Microscopic examples of preclinical models of colorectal adenocarcinomas with different degrees of
heterogeneity. Cell line LS174T and organoid lines P23T and P26T (phase contrast) are shown next to PDTX P6X2 (H&E stain, reprinted from [18]).

achieved by avoiding 7z wvitro culture altogether and
directly engrafting human cancers [15] (Table 1).

Patient-derived tumor xenografts

PDTX are obtained by directly implanting freshly
resected tumor pieces subcutaneously or orthotopi-
cally into immuno-compromised mice [16,17]. Follow-
ing tumor take, PD'TX grow progressively and can be
serially engrafted into increasing numbers of animals.
Since the physiological 7z vive environment, although
from a different species, mimics the original tumor
conditions much better than a plastic dish, success
rates of establishing PDTX are higher than for cell
lines and genetic divergence is less common [15].
Importantly, biological stability of PDTX from a
variety of primary tumors including colon, lung, breast,
pancreas, prostate, and ovarian cancer has been estab-
lished [16,17]. Xenografted colon tumors, for example,
preserve their original genetic and histological profiles
for up to 14 passages [18]. In addition, several sub-

clones grow in parallel and partially conserve parental
tumor heterogeneity (Figure 1). These benefits make
PDTX a valid preclinical model and allow meaningful
biological assays including drug efficacy and predictive
biomarker development studies [17]. To this end,
PDTX have been used to functionally verify rationally
predicted drug response scores [19], develop predic-
tive biomarkers for standard and novel anticancer
drugs [17], and identify effective treatment regimens
for patients [20°°].

Even though PDTX bear great promise as preclinical
model for human cancer, there are several caveats.
First, tumor take is unsatisfactory with aggressive
tumors engrafting best. In some instances, the ability
to xenograft even serves as a negative predictor of the
patients’ disease free survival [21]. Second, although
similarities between PDTX and parental tumors are
common, they cannot be assumed and must be rigor-
ously tested [17]. Third, tumor-host interactions are
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Table 1

Characteristics of the three described preclinical cancer models. We judged the representation of the respective feature as best (+++),

suitable (++), possible (+), and unsuitable (—)

Feature Cell lines Xenografts Organoids
Ease of maintenance +++ - +
Success rate of initiation + ++ etLdt
Expansion +++ + +++
Biological stability + ++ ++
Representation of cancer spectrum + ++ ++
Genetic manipulation +++ - ++
Normal control — — T+
3D growth +/— +++ ++
Heterogeneity = g +
Dose-limiting organ toxicity = St _
Tumor-stroma interaction — 4+ _
Immune system — — _
Testable drug classes?® 2 3 2
Low throughput drug screens +++ + +++
High throughput drug screens +++ - ++
Conferment of drug resistance - ++ +

2 The following three general classes of anti-cancer drugs have been established for judging the use of preclinical models: agents targeting tumor-
specific proteins, agents targeting host-tumor interactions, and agents targeting tumor cells empirically [3].

not always conserved across species (e.g. HGF-ME'T)
and tumor immunity is entirely absent [3]. Fourth, the
use of animals is labor intense, time consuming, and
cthically problematic. Consequently, PDTX are no
substitute for iz wvitro cultures with respect to initial
high throughput drug screens. This is particularly
relevant since altered signaling pathways often cross-
talk to others which requires combinatorial therapy of
many drug candidates for optimal treatment [22].
Recently established organoid cultures from primary
tumors [23°°] may expand the repertoire of available
preclinical tumor models by bridging this gap between
cancer cell lines and xenografts.

Organoids

The past years have seen unprecedented developments
in the use of human tissue surrogates 7z vitro. Adult stem
cells are embedded in a three-dimensional matrix and
allowed to self-organize into epithelia of the respective
organ of origin. The resulting organoids represent the
physiology of native epithelia much better than
traditional cell lines. Mini-guts, for example, reproduce

the epithelial architecture of small intestine and colon
[23°°,24°].

T'he base for growing human intestinal organoids was laid
by discovering the culture conditions of mouse intestinal
organoids [25°]: by mimicking the environment of intes-
tinal stem cells, Sato and colleagues succeeded in estab-
lishing the minimal requirements for sustainable growth
of crypt-villus structures without mesenchyme. In short,
R-spondin-1 (enhances Wnt signaling), EGF (mitogen),
Noggin (inhibits BMP signaling), and Matrigel (base-
ment membrane substitute) are indispensable stem cell
maintenance factors for small intestinal cultures with

supplementary Wnt being necessary for colonic organoid
growth. Human intestinal organoids additionally require
nicotinamide, A83-01 (Alk inhibitor), SB202190 (p38
inhibitor), and prostaglandin E, (PGE,, mitogen) for
long-term expansion (human intestinal stem cell culture
(HISC) condition). Differentiation can be achieved by
withdrawing growth factors while simultaneously block-
ing Notch signaling (dibenzazepine, y-secretase inhibi-
tor) [23°°,24°]. Intestinal organoids are currently unique,
because they efficiently form, self-renew, and expand
long-term while remaining genetically stable [23°°].
These features allow many applications ranging from
basic to translational research [26,27]. Importantly,
patient derived intestinal organoids emulate human dis-
ease as has recently been demonstrated for cystic fibrosis
[28°]. Currently, organoids are being established from a
variety of tumors with colorectal cancer (CRC) leading
the way.

Cancer organoids

Cancer occurs through a chain of cellular alterations
allowing uncontrolled proliferation and gradual loss of
differentiation [29,30]. Most CRCs progress sequentially
from adenomatous polyps to advanced adenomas, carci-
nomas 7z situ, and adenocarcinomas. There are strong
indications that successive genetic changes are causal to
cancer progression [31,32]. Mutations in the tumor sup-
pressor gene AP(C (adenomatous polyposis coli) or other
Wnt pathway components (AXINZ2, CTNNBI) can be
found in most microscopic lesions and are therefore
considered initiating and rate-limiting mutations for the
majority of CRCs [31,32]. Additional mutations associ-
ated with CRC affect DNA repair (MLHI, MSHZ2, and
MSH©6), cell-cycle regulation (7P53), and growth factor
signaling (TGFBR2, SMAD4, KRAS, BRAF, and PTEN)
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[31,32]. Recent evidence furthermore suggests that can-
cer stem cells rather than random cells fuel tumor growth
in several tissues including the intestine [33-35]. It is
therefore plausible to attempt culturing epithelial-
derived cancers using the HISC protocol described
earlier.

Organoids are indeed readily established from surgically
resected intestinal tissue and endoscopic biopsies of
patients suffering from adenomas and adenocarcinomas
[23°°]. These CRC organoids grow as irregular compact
structures and can be expanded seemingly indefinitely.
Apart from Goblet and enteroendocrine cells, they mostly
contain proliferating cells [23°°]. The presence of differ-
entiated cells within CRC organoids potentially allows
conferment of drug resistance to cancer stem cells [36].
Additional heterogeneity can be introduced by co-cultur-
ing patient-matched healthy control organoids estab-
lished from tumor-adjacent normal tissue (Figure 1).
However, in order to avoid cross-contamination, it is
essential to initiate the tumor organoid culture from a
pure tumor population and/or use selective culture con-
ditions. CRC lesions are generally well defined which
allows the pathologist to exclude potentially contami-
nating normal epithelium. Theoretically, selective cul-
ture conditions can be applied for the majority of CRCs
given the high penetrance of activating Wnt pathway
mutations [31,32]. Indeed mouse intestinal organoids
with genetically inactivated Apc grow in the absence of
Wnt or R-spondin-1, whereas wild-type organoids do not
[23°°,37,38]. Likewise, this selection pressure can be
applied to most CRC organoids by withdrawing R-spon-
din-1[23°°] or Wnt. Since EGF is dispensable for growing
a different subset of CRC organoids (presumably with
KRAS or BRAF mutations) [23°°], withdrawal of this
growth factor or addition of EGFR inhibitors can enforce
the necessary selection pressure. However, standard
HISC conditions have to be used in order to grow orga-
noids from adeno(carcino)mas without Wnt or EGFR
pathway mutations. In that case, the differentiation be-
tween normal and CRC organoids relies on sample purity
and organoid characterization. It is therefore not trivial to
generate organoid lines that fully represent the spectrum
of CRCs. Given the high success rate of establishing CRC
organoids, their unlimited proliferative potential, bio-
logical stability, and cryostorage ability it seems, however,
to be merely a question of effort to do so. If combined
with genetic information and pharmacological profiles,
such an organoid collection could aid in identifying CRC
specifics that predict a patient’s drug response similar to
the Cancer Cell Line Encyclopedia [13°°].

Advanced cancers display genomic instability which
drives tumor progression by accumulating additional
mutations [30]. Assuming random mutability, it is there-
fore unlikely that tumor organoids ex vivo undergo the
same genetic alterations as their parental tumor 7z vivo

(unless the same selection pressures apply). On the
other hand, targeted therapeutic treatment is known
to evoke resistance and favor the selection of subclones,
potentially also 7z vitro. To directly compare tumor
progression and drug induced selection 77 vitro and in
vivo, multiple organoid lines from the same patient
could be established (e.g. early, progressed, and metas-
tasized cancers; pre-treatment and post-treatment) and
treated in parallel.

A possible disadvantage of organoid culture may be that
organoids from progressed cancers counterintuitively
grow worse than those from early tumors or normal tissue
due to culture conditions (optimized for normal culture)
and potential loss of epithelial integrity (epithelial-
mesenchymal transition). On the other hand, organoids
from early tumor stages can be established at much higher
success rates than cancer cell lines or PD'TX allowing a
better representation of the respective cancer spectrum.
Organoids as pure epithelial cultures lack tumor stroma
and vasculature. In that respect, PDTX models are more
physiologically relevant and allow drug tests that target
host—tumor interactions. Regarding tumor heterogeneity,
organoids therefore fall in between purely clonal cancer
cell lines and PD'TX. Ambivalent is the requirement of
matrigel which makes organoid culture more labor
intense than culturing cell lines in 2D and adds a com-
plicating parameter to potential drug screens. Then again,
the laminin-rich and collagen IV-rich matrigel functions
as a basement membrane substitute which, given its
tumor origin [39], may be physiologically relevant. Also,
organoid culture is considerably easier than maintaining
PDTX. Currently available human (cancer) organoid
lines are limited to the intestine. However, given recent
advances in organoid cultures of several mouse tissues
(stomach, liver, pancreas, and others [40-42]) it seems
merely a question of time and effort before equivalent
human (cancer) organoids can be cultivated as well. A
future collection of organoids that is representative of the
respective cancer group, could help patient stratification
as well as oncogenic therapeutics.
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